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1 Introduction

Motivated by the investigation of the AdS/CFT correspondence for AdS4 × CP 3 [1], the

CPn giant magnons have been recently discussed in some detail [2–9]. Similarly to their Sn

counterparts, they are soliton solutions to the equations of motion of a Pohlmeyer reduced

sigma model with target space CPn.

So far, four different kinds of CPn giant magnons have been described in the lit-

erature. Two of them are obtained by embedding the original S2 Hofman-Maldacena

giant magnon [10] in two distinct subspaces; namely, CP 1 ⊂ CPn [2], and RP 2 ⊂ CPn

(n ≥ 2) [3]. They have one parameter, and carry a single non-vanishing conserved charge

(angular momentum). The third one is obtained by embedding Dorey’s dyonic S3 giant

magnon [11] via RP 3 ⊂ CPn (n ≥ 3) [6], and it is a two-parameter (dyonic) generaliza-

tion of the RP 2 magnon that carries two conserved charges. The fourth CPn magnon

was recently constructed by the present authors in [12] using the dressing method (see

also [7, 8]). It has two parameters and takes values in a CP 2 subspace but carries only a

single conserved charge. The relationship between all these (sigma model) giant magnons

and those obtained from algebraic curves is discussed in [9].

The purpose of this note is to argue that all those magnons can be built out of a

new type of CPn dyonic magnon that we construct using the dressing transformation

method. The existence of additional CPn dyonic solutions was conjectured in [12] as a

consequence of the general form of the metric on the moduli space of internal collective
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coordinates. Moreover, the main features of a solution of precisely the type of the new

dyon were discussed in [9], although its explicit form was only found there for a particular

value of the parameters. Our conclusion will be that the dressing method can produce all

known solutions, either as composites of the new dyonic magnon, or as special limits of a

single one. In particular, we will argue that the embedding of Dorey’s dyonic magnon in

a subspace RP 3 ⊂ CPn is a composite configuration of two of the new dyonic magnons

and has internal moduli corresponding to separating the constituents. As a by-product

we are able to show how Dorey’s magnon can be constructed in the Sn theory directly by

using the dressing method. In this context, it is a fundamental object which cannot be

“pulled apart”.

One of the main results of [12] was that the dressing method naturally produces magnon

solutions in the original sigma model and at the same time the associated solution — the

“solitonic avatar” — in the associated Symmetric-Space Sine-Gordon (SSSG) theory. This

fact allows us to also investigate the nature of the avatar of the new dyonic magnon.

The paper is organized as follows. In section 2 we review the construction of the CPn

sigma model and in section 3 we describe how to impose the Pohlmeyer reduction and then

how to construct solutions using the dressing transformation. In section 4 we construct

the simplest kinds of solution and in particular previously over-looked solutions that are

the new elementary dyonic magnons. In section 5 we consider the new solutions from the

point-of-view of the associated SSSG system of equations. Finally in section 6 we show

that all the known solutions can be recovered from the new dyons.

2 The CP
n sigma model

The 2n-dimensional complex projective space

CPn =
C

n+1

Z ∼ λZ
≃ SU(n + 1)

U(n)
, (2.1)

where Z is a complex n+ 1 dimensional vector and λ ∈ C, is a compact symmetric space

F/G specified by the involution

σ−(f) = θfθ , (2.2)

where

f ∈ SU(n + 1) , θ = diag(−1, 1, . . . , 1) . (2.3)

Acting on f, which is the Lie algebra of F = SU(n + 1), it gives rise to the canonical

decomposition

f = g ⊕ p with [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g , (2.4)

where, using the fundamental representation of SU(n + 1), the form of the elements r ∈ g

and k ∈ p is

r =




inφ 0 · · · 0

0
... −iφIn×n + M
0



, k =




0 v1 · · · vn

−v∗1 0 · · · 0
...

... · · · ...

−v∗n 0 · · · 0



, (2.5)
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with M a n× n anti-Hermitian matrix. Notice that g is the Lie algebra of G = U(n).

Following the approach of [12, 13], the sigma model with target space CPn can be

formulated in terms of a SU(n + 1)-valued field F subject to the constraint

σ−(F) = θFθ = F−1 . (2.6)

The map from the space CPn into this field is given by

F = θ

(
I − 2

ZZ
†

|Z|2
)
, (2.7)

where Z is a complex n+1 dimensional vector whose components are the complex projective

(embedding) coordinates. Then, the Lagrangian of the sigma model is

L = −Tr
(
JµJ µ

)
with Jµ = ∂µFF−1 , (2.8)

whose equations-of-motion of (2.8) are

∂µJ µ = 0 . (2.9)

They exhibit that Jµ is the conserved current corresponding to the global symme-

try transformation1

F → UFσ−(U−1) , U ∈ SU(n + 1) , (2.10)

which gives rise to the conserved Noether charge

QL =

∫ +∞

−∞
∂0FF−1 . (2.11)

3 Pohlmeyer reduction and dressing transformations

“Giant magnon” is the name given to a soliton of the Pohlmeyer reduced sigma model in

the context of string theory. For the CPn sigma model, the Pohlmeyer reduction involves

imposing the conditions [12, 14]2

∂±FF−1 = f±Λf−1
± , (3.1)

where f± ∈ SU(n + 1) and

Λ =




0 −1 0

1 0 0

0 0 0


 . (3.2)

Pohlmeyer reduction gives rise to an associated relativistic integrable system that is

a generalization of the sine-Gordon theory [15]. These are the SSSG theories, and giant

1The Lagrangian density (2.8) is invariant under the global transformations F → UFV for any U, V ∈

SU(n + 1). However, this symmetry is reduced by the constraint (2.6) so that the CPn sigma model is

invariant only under (2.10).
2In our notation, x± = t± x and ∂± = 1

2
(∂t ± ∂x).
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magnons can be mapped into the soliton solutions of their equations-of-motion. These

latter equations are

[
∂+ + γ−1∂+γ + γ−1A

(L)
+ γ − 1

2
Λ , ∂− +A

(R)
− − 1

2
γ−1Λγ

]
= 0 , (3.3)

where

γ = f−1
− f+ (3.4)

is the SSSG group field, which takes values in G ⊂ F . The quantities A
(L)
+ and A

(R)
− can

be interpreted as components of gauge fields taking values in h, the Lie algebra of H ⊂ G,

which is the subgroup of elements that commute with Λ. They are given by

A
(L)
+ = f−1

− ∂+f− − 1

2
γΛγ−1 ,

A
(R)
− = f−1

+ ∂−f+ − 1

2
γ−1Λγ . (3.5)

In the present case, F = SU(n + 1), G = U(n) and H = U(n − 1).

We will be interested in the CPn magnons constructed using the dressing transfor-

mation method [16, 17], which was shown to be consistent with the Pohlmeyer reduction

in [12]. The procedure begins by identifying a “vacuum” solution which, in the present

context, will be the simplest one which naturally satisfies the constraints (3.1) with f± = I.

It corresponds to

F0 =




cos 2t − sin 2t 0

+ sin 2t cos 2t 0

0 0 I


 , Z0 = e1 cos t− e2 sin t , (3.6)

where {e1, . . . , en+1} is a set of real orthonormal vectors in C
n+1 and we have highlighted

the 2 × 2 subspace associated to e1 and e2.

The dressing transformation method makes use of the associated linear system

∂±Ψ(x;λ) =
∂±FF−1

1 ± λ
Ψ(x;λ) , Ψ(x;∞) = I , F(x) = Ψ(x; 0) , (3.7)

whose integrability conditions are equivalent to the equations of motion of the sigma model.

For CPn, the solutions Ψ(x;λ) have to satisfy the two conditions

Ψ−1(x;λ) = Ψ†(x;λ∗) , Ψ(x; 1/λ) = FθΨ(x;λ)θ , (3.8)

which ensure that F−1 = F† and that the constraint (2.6) is satisfied. Then, the dressing

transformation involves constructing a new solution Ψ of the linear system of the form

Ψ(x;λ) = χ(x;λ)Ψ0(x;λ) (3.9)

in terms of an old one, which in our case correspond to the vacuum solution in (3.6):

Ψ0(x;λ) = exp
[( x+

1 + λ
+

x−
1 − λ

)
Λ
]
. (3.10)
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Following [17], the general form of the “dressing factor” is

χ(λ) = 1 +
∑

i

Qi

λ− λi
, χ−1(λ) = 1 +

∑

i

Ri

λ− µi
, (3.11)

where the residues are matrices of the form

Qi = XiF
†
i , Ri = H iK

†
i (3.12)

for vectors X i, F i, H i, and Ki. For CPn, they are given by

XiΓij = Hj , Ki

(
Γ†)

ij
= −F j , Γij =

F
†
iHj

λi − µj
,

F i = Ψ0(λ
∗
i )̟i , H i = Ψ0(µi)πi ,

(3.13)

where ̟i and πi are complex constant n+ 1 dimensional vectors. The allowed number of

poles and their positions are constrained by the conditions (3.8). They imply that µi = λ∗i
and, moreover, that the poles {λi} must come in pairs (λi, λi+1 = 1/λi). In addition,

πi = ̟i and, for each pair,

̟i+1 = θ̟i . (3.14)

In [12], it was shown that the value of the SU(n+1) charge carried by these “dressed” solu-

tions, relative to the vacuum solution, can be easily calculated in terms of the asymptotic

values of the residues by means of

∆QL =
∑

i

Qi

∣∣∣
x=+∞

−
∑

i

Qi

∣∣∣
x=−∞

. (3.15)

One the main results of [12] is that the dressing transformation not only produces

the magnon solutions but the associated solitons, the “avatars”, of the related Symmetric

Space Sine-Gordon (SSSG) equation. They are given by

γ = F−1/2
0 χ(+1)−1χ(−1)F1/2

0 , (3.16)

with A
(L)
+ = A

(R)
− = 0. The group field also satisfies the constraints

γ−1∂+γ
∣∣∣
h

= ∂−γγ
−1
∣∣∣
h

= 0 . (3.17)

4 Magnons by dressing the vacuum

We shall consider in detail the soliton solutions obtained from a single pair of poles {ξ, 1/ξ},
with ξ = reip/2. The dressing factor is [12]

χ(λ) = 1 +
Q1

λ− ξ
+

Q2

λ− 1/ξ
, (4.1)

where

Q1 =
1

∆

[
− |ξ2|β
ξ − ξ∗

F F
† +

ξγ

|ξ|2 − 1
F0θFF

†
]
,

Q2 =
1

∆

[
β

ξ − ξ∗
F0θFF

†θF†
0 − ξ∗γ

|ξ|2 − 1
FF

†θF†
0

]
,

(4.2)
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and we have defined the real numbers

β = F
†
F , γ = F

†F0θF , ∆ =
|ξ|2γ2

(|ξ|2 − 1)2
− |ξ|2β2

(ξ − ξ∗)2
. (4.3)

Here,

F = Ψ0(ξ
∗) ̟ (4.4)

where ̟ is a complex n + 1 dimensional vector. Then, the magnon solution is given by

F = Ψ(0) = χ(0)F0, which corresponds to the projective coordinates [12] (see also [18])

Z =
(
α̃+ θFF

†θ
)
Z0 , (4.5)

with

α̃ = − ξβ

ξ − ξ∗
− γ

|ξ|2 − 1
. (4.6)

In the following, it will be useful to introduce the notation

f(ξ∗) = −i
(

x+

1 + ξ∗
+

x−
1 − ξ∗

)
= 2F (t, x) − iG(t, x) , (4.7)

where

F (t, x) =
1

2
x′ cosα =

(1 + r2)r sin p
2

(1 − r2)2 + 4r2 sin2 p
2

x− r2 sin p

(1 − r2)2 + 4r2 sin2 p
2

t ,

G(t, x) = t− t′ sinα = − 2(1 − r2)r cos p
2

(1 − r2)2 + 4r2 sin2 p
2

x+
2(1 − r2 cos p)

(1 − r2)2 + 4r2 sin2 p
2

t .

(4.8)

The rapidity ϑ and the parameter α are determined in terms of r and p by

tanhϑ =
2r

1 + r2
cos

p

2
, cotα =

2r

1 − r2
sin

p

2
, (4.9)

and the Lorentz boosted coordinates t′ and x′ are

t′ = t cosh ϑ− x sinhϑ , x′ = x coshϑ− t sinhϑ . (4.10)

Looking at (4.2), it is easy to see that the solutions corresponding to ̟ and ̟ →
λ̟, λ ∈ C, are equivalent solutions. The components of ̟ represent a set of collective

coordinates for the magnons whose interpretation will be clarified in section 6. In particular,

some of the components of ̟ fix the position of the centre of the magnons/solitons. Their

localized nature arises because ξ has a imaginary part and thus Ψ0(ξ
∗) has an exponential

dependence on x. Since Λ is anti-hermitian, the relevant dependence is [12]

exp

[
i Im

(
x+

1 + ξ∗
+

x−
1 − ξ∗

)
Λ

]
= exp

[
2i F (t, x)Λ

]
, (4.11)

and this leads to exponential fall-off of the energy/charge density away from the centre

which is located at the solution of

F (t, x) = F0 , (4.12)

– 6 –
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where F0 is a constant determined by the components of ̟. In particular, this equation

shows that the velocity of the magnon is

v =
2r

1 + r2
cos

p

2
= tanhϑ . (4.13)

Moreover, since Ψ0(ξ
∗) always appear in the combination F = Ψ0(ξ

∗)̟, a constant shift

of the solitons in space and time act on the collective coordinates via3

̟ −→ exp

[(
δx+

1 + ξ∗
+

δx−
1 − ξ∗

)
Λ

]
̟ . (4.14)

The solutions provided by (4.5) give rise to different species of magnons. In order

to find them out, we shall investigate the value of the SU(n + 1) charge ∆QL by means

of (3.15). Using (4.7), we can write

Ψ0(ξ
∗) =

1

2
ef(ξ∗)




1 −i 0

+i 1 0

0 0 0


+




0 0 0

0 0 0

0 0 I


+

1

2
e−f(ξ∗)




1 +i 0

−i 1 0

0 0 0


 , (4.15)

whose asymptotic behaviour can be easily worked out by noticing that

lim
x→±σ∞

F (t, x) = ±∞ with σ = sign
(
r sin

p

2

)
. (4.16)

Now, if we split the components of the complex (n+ 1)-vector ̟ as

̟ = ω1e1 + ω2e2 + Ω , Ω · e1 = Ω · e2 = 0 , (4.17)

it is easy to show that

β = F
†
F =

1

2
e4F |ω1 − iω2|2 + Ω†Ω +

1

2
e−4F |ω1 + iω2|2

γ = F
†F0θF =

(
|ω2|2 − |ω1|2

)
cos
(
2(G− t)

)

+
(
ω1ω

∗
2 + ω∗

1ω2

)
sin
(
2(G− t)

)
+ Ω†Ω .

(4.18)

Therefore, we can distinguish three cases.

4.1
∣∣ω1 ± iω2

∣∣ 6= 0

In this case,

β
x→±σ∞−−−−−−−→ 1

2
e±4F |ω1 ∓ iω2|2 + · · · , γ

x→±σ∞−−−−−−−→ finite

=⇒ ∆
x→±σ∞−−−−−−−→ − |ξ|2

(ξ − ξ∗)2
1

4
e±8F |ω1 ∓ iω2|2 + · · · ,

(4.19)

3For the magnon solutions F = χ(0)F0, this transformation gives rise to a constant shift of the dressing

factor χ(0) in space and time, but not of F0 which depends only on t. In contrast, it is completely equivalent

to a constant shift of the solitonic avatars given by (3.16) in space and time.

– 7 –
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and

FF
† x→±σ∞−−−−−−−→ 1

4
e±4F |ω1 ∓ iω2|2




1 ∓i 0

±i 1 0

0 0 0


+ · · ·

F0θFF
†θF†

0
x→±σ∞−−−−−−−→ 1

4
e±4F |ω1 ∓ iω2|2




1 ±i 0

∓i 1 0

0 0 0


+ · · · .

(4.20)

Therefore,

Q1
x→±σ∞−−−−−−→ 1

2
(ξ − ξ∗)




1 ∓i 0

±i 1 0

0 0 0


 , Q2

x→±σ∞−−−−−−→ −1

2

ξ − ξ∗

|ξ|2




1 ±i 0

∓i 1 0

0 0 0


 (4.21)

which, using (3.15), give rise to the charge

∆QL =
(
Q1 +Q2

)∣∣∣
+∞

−∞
= σ

[
i(ξ − ξ∗)Λ + i

ξ − ξ∗

|ξ|2 Λ

]
= −2

r2 + 1

|r|
∣∣ sin p

2

∣∣Λ . (4.22)

This case produces the magnon solution constructed in [12] (see also [7, 8]). Notice

that the transformation (4.14), which corresponds to a constant shift in space and time, is

equivalent to

ω1 ± iω2 −→ e∓δf
(
ω1 ± iω2

)
(4.23)

where (see (4.7))

δf = −i
(

δx+

1 + ξ∗
+

δx−
1 − ξ∗

)
= 2δF − iδG . (4.24)

Then,
∣∣∣
ω1 − iω2

ω1 + iω2

∣∣∣ −→ e4δF
∣∣∣
ω1 − iω2

ω1 + iω2

∣∣∣ (4.25)

and, as explained in the paragraph around (4.12), the centre of this magnon is located at

the solution of

F (t, x) =
1

4
log
∣∣∣
ω1 − iω2

ω1 + iω2

∣∣∣ , (4.26)

which clarifies the meaning of the collective coordinates ω1 and ω2. Then, up to a shift of

the soliton in space and time, we can always set ω2 = 0 and, using the invariance under

complex re-scalings ̟ → λ̟, we can also set ω1 = i, so that

̟ = ie1 + Ω , (4.27)

which is precisely the normalization used in [12].

– 8 –
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4.2
∣∣ω1 + iω2

∣∣ = 0.

In this case, ω2 = +iω1 and thus

β = 2|ω1|2e+4F + Ω†Ω , γ = Ω†Ω

=⇒ ∆
x→+σ∞−−−−−−−→ − |ξ|2

(ξ − ξ∗)2
4e+8F + · · ·

∆
x→−σ∞−−−−−−−→

[ |ξ|2
(|ξ|2 − 1)2

− |ξ|2
(ξ − ξ∗)2

] (
Ω†Ω

)2
+ · · · ,

(4.28)

together with

FF
† x→+σ∞−−−−−−−→ |ω1|2e+4F




1 −i 0

+i 1 0

0 0 0


+ · · ·

F0θFF
†θF†

0
x→+σ∞−−−−−−−→ |ω1|2e+4F




1 +i 0

−i 1 0

0 0 0


+ · · ·

FF
† , F0θFF

†θF†
0 , F0θFF

† , FF
†θF†

0
x→−σ∞−−−−−−−→

(
0 0

0 ΩΩ†

)
+ · · ·

(4.29)

This leads to

Q1
x→+σ∞−−−−−−−→ 1

2
(ξ − ξ∗)




1 −i 0

+i 1 0

0 0 0


 , Q2

x→+σ∞−−−−−−−→ −1

2

ξ − ξ∗

|ξ|2




1 +i 0

−i 1 0

0 0 0


 ,

Q1 +Q2
x→−σ∞−−−−−−−→ (ξ − ξ∗)(|ξ|2 − 1)

|ξ|2

(
0 0

0 ΩΩ†/Ω†Ω

)

(4.30)

and, using (3.15), to the charge

∆QL =
(
Q1+Q2

)∣∣∣
+∞

−∞
= − 1 + r2

|r|
∣∣ sin p

2

∣∣Λ− 1 − r2

|r|
∣∣ sin p

2

∣∣
(
i1 0

0 −2iΩΩ†/Ω†Ω

)
. (4.31)

It corresponds to a new dyonic solution specified by the projective coordinates

Z =

[
−
(
2|ω1|2e4F + Ω†Ω

) ξ

ξ − ξ∗
− Ω†Ω

|ξ|2 − 1

] (
cos t e1 − sin t e2

)

+ |ω1|2e4F e−it
(
e1 − ie2

)
− ω∗

1e
2F ei(G−t)Ω ,

(4.32)

which is apparently singular when |ξ| = 1. However, a regular solution in this limit can be

constructed by imposing the additional condition that

Ω†Ω = 0 ⇒ Ω = 0 . (4.33)
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This particular limit produces precisely the embedding of the Hofman-Maldacena S2

magnon in CP 1 considered in [2]. In fact, (4.32) is the dyonic generalization of the CP 1

magnon whose existence was conjectured in [9] where only the explicit form of a solution

with p = π was provided. In appendix A, we show that the solution reported in [9] is

recovered for the particular choice of parameters

p = π , Ω†Ω = 2
r2 − 1

r2 + 1
|ω1|2 . (4.34)

In this case, the transformation (4.14), which corresponds to a constant shift in space

and time, is equivalent to

ω1 −→ e+δfω1 ⇒ |ω1| −→ e2δF |ω1| (4.35)

where δf is defined in (4.24). Then, according to the discussion around (4.12), and taking

into account that the solution depends on ω1 and Ω only up to complex re-scalings ω1 →
λω1 and Ω → λΩ, the centre of this magnon is located at the solution of

F (t, x) =
1

2
log

|ω1|
|Ω| . (4.36)

Therefore, up to a shift of the soliton in space and time, we can always set |Ω| = |ω1| and,

using the invariance under complex re-scalings ̟ → λ̟, we can also set ω1 = 1, so that

̟ = e1 + ie2 + Ω , (4.37)

with |Ω| = 1.

Eq. (4.32) manifests the fact that the new solution takes values in the CP 2 ⊂ CPn sub-

space picked out by the three mutually orthogonal vectors {e1,e2,Ω}. According to (4.31),

its charge has two independent components. Namely,

∆QL = JΛΛ + JhhΩ , JΛ = −1 + r2

|r|
∣∣ sin p

2

∣∣ , Jh = −1 − r2

|r|
∣∣ sin p

2

∣∣ , (4.38)

where

hΩ =

(
i1 0

0 −2iΩΩ†/Ω†Ω

)
(4.39)

is one of the generators of H = U(n − 1), which is the subgroup of elements of G = U(n)

that commute with Λ. These charges satisfy the relation

− JΛ =

√
J2

h + 4 sin2 p

2
. (4.40)

In the AdS/CFT context [10, 11], the components JΛ and Jh are identified, up to scaling,

with ∆− 1
2J andQ, respectively, where ∆ is the scaling dimension of the associated operator

in the CFT, and J and Q are two conserved U(1) R-charges:4

∆ − 1

2
J = −

√
λ

2
JΛ ,

1

2
Q =

√
λ

2
Jh , (4.41)

4To be specific, we use the same normalization as [9].
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where λ is the ’t Hooft coupling. Then, (4.40) becomes the celebrated dispersion relation

∆ − 1

2
J =

√
1

4
Q2 + 2λ sin2 p

2
. (4.42)

Eq. (4.38) shows that all the inequivalent magnons of this type are obtained with r > 0

and sin p
2 > 0, and that the transformation r → 1/r corresponds to Jh → −Jh.

4.3
∣∣ω1 − iω2

∣∣ = 0

This is equivalent to ω2 = −iω1. Again, using the invariance under complex re-scalings

̟ → λ̟, we can set ω1 = 1, so that

̟ = e1 − ie2 + Ω . (4.43)

However, this case does not give rise to new magnon solutions. Let us write

̟̂ =




ω1

−iω1

Ω


 = −θ




ω1

+iω1

−Ω


 ≡ −θ̟ , (4.44)

where ̟ produces (4.32) with Ω → −Ω. Then, using (3.8),

F [̟̂, ξ] = Ψ0(ξ
∗)̟̂ = −θF−1

0 Ψ0(1/ξ
∗)̟ = −θF−1

0 F [̟, 1/ξ] , (4.45)

where we have explicitly indicated the dependence of F on ̟ and ξ. This implies

β[̟̂, ξ] = β[̟, 1/ξ] , γ[̟̂, ξ] = γ[̟, 1/ξ] , ∆[̟̂, ξ] = ∆[̟, 1/ξ] (4.46)

and, finally,

Q1[̟̂, ξ] = Q2[̟, 1/ξ] . (4.47)

Therefore, the dressing factor(4.1) satisfies

χ[λ; ̟̂, ξ] = χ[λ; ̟, 1/ξ] , (4.48)

which shows that ̟̂ = −θ̟ and ξ gives rise to the same solution as ̟ and 1/ξ, and

confirms that taking ω2 = −iω1 also leads to solutions of the form (4.32). It is worth

noticing that f(1/ξ∗) = −f(ξ∗) − 2it, which means that

ξ → 1/ξ ⇒ F (t, x) −→ −F (t, x) , G(t, x) −→ −G(t, x) + 2t . (4.49)

5 The solitonic avatars

In the present case, it is sufficient to consider the case of CP 2 because the solutions in this

case can then be simply embedded in CPn, n > 2, in the obvious way. Introducing the

parameterization in [12]

γ = eaLh




1 0 0

0 cos θeiϕ sin θ

0 − sin θ cos θe−iϕ


 e−aRh , (5.1)
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where h = idiag(1, 1,−2) is the generator of h, the Lie algebra of H = U(n − 1), the dyon

solution (3.16) in the rest frame (p = π) is5

ψ̃ =
4

3

1 − r2

r2 + 1
t ,

ψ = −4 tan−1

(
1

r
tanh

4rx

r2 + 1

)
,

ϕ = −2

3
tan−1

(
1

r

)
− tan−1

(
1 − 3r2

r3 − 3r
tanh

4rx

r2 + 1

)
+ tan−1

(
1

r
tanh

4rx

r2 + 1

)
,

sin2 θ =
16r2(r2 − 1)

(r2 + 1)2
(
2r2 + (r2 + 1) sinh2 4rx

r2+1

) ,

(5.2)

where

ψ = 2(aL − aR) , ψ̃ = 2(aL + aR) . (5.3)

The field ψ(x, t) has a kink-like behaviour with

∆ψ = ψ(∞, t) − ψ(−∞, t) = −8 tan−1
(
r−1
)

= −2π − 4α , (5.4)

where α is defined by (4.9) for p = π (vanishing rapidity), so cotα = 2r/(1 − r2). Notice

that the S1-valued field ψ̃(x, t) has constant angular velocity 4
3(1 − r2)/(r2 + 1) = 4

3 sinα.

In this sense the solution is metaphorically the dyon solution of four-dimensional gauge

theories where the angular variable ψ̃ is the U(1) charge angle of the magnetic monopole.

As described in [12, 14], the SSSG system can be written as the equations-of-motion of

a Lagrangian field theory. For the CP 2 theory there are two inequivalent ways of doing this

corresponding to “vector gauging” and “axial gauging” which are related by a target-space

T-duality symmetry [19]. (For CPn, n > 2, axial gauging is not possible.) For vector

gauging, the field ψ̃(x, t) is a gauge degree-of-freedom and is consequently “gauged away”

leaving a theory with physical fields (ϕ,ψ, θ) and a Lagrangian density

L = ∂µθ∂
µθ +

1

4
∂µψ∂

µψ + cot2 θ∂µ(ψ + ϕ)∂µ(ψ + ϕ) + 2 cos θ cosϕ . (5.5)

The H = U(1) symmetry ψ → ψ + a is broken by the vacuum configuration θ = 0, ϕ = 0

and ψ arbitrary, and consequently the soliton (5.2) carries topological, or kink, charge

QT =
1

4
∆ψ h =

(
−π

2
− α

)
h . (5.6)

On the contrary, for the axial-gauged theory, the field ψ(x, t) is a gauge degree-of-

freedom that is gauged away leaving a theory with physical fields (ϕ, ψ̃, θ) and a La-

grangian density

L = ∂µθ∂
µθ +

1

1 + 4 cot2 θ

(
9

4
∂µψ̃∂

µψ̃ + cot2 θ∂µϕ∂
µϕ

− 6 cot2 θǫµν∂µψ̃∂νϕ

)
+ 2cos θ cosϕ ,

(5.7)

5In the following, we have used the symmetries to shift x, ψ and ψ̃ by appropriate constants.
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In the resulting theory, the H = U(1) group survives as a genuine symmetry ψ̃ → ψ̃ + a

(corresponding to vector transformations) with an associated Noether current. The vacuum

is invariant under the symmetry and remains unbroken. The quantity ψ(x, t) still plays a

rôle since it determines the associated Noether current

Jµ = ǫµν(Aν + 1
4∂νψ h) , (5.8)

In this case the gauge field vanishes and so, as expected, the Noether charge is the same

as the topological charge of the vector-gauged theory:

QN =

∫
dx J0 =

1

4
∆ψh =

(
− π

2
− α

)
h . (5.9)

The masses of the dyon follows from the additivity of the mass of the — now realized

to be composite (see section 6)—soliton calculated in [12], giving

Mdyon =
4r

r2 + 1
= 2 cosα . (5.10)

It is interesting to note that the dyon is a generalization of the soliton (or dyon) of the

complex sine-Gordon theory [20]. It would be interesting to follow the approach of [20] to

quantize the CP 2 model (see also [21]).

6 Constructing all the known CP
n magnons

Since these new objects carry general charges we refer to them as “CPn dyons”. They

are labelled by the data
(
r, p,Ω

)
, corresponding to dressing data ̟ = e1 + ie2 + Ω and

ξ = reip/2, which determines their charges and rapidity (the latter via (4.9)). The overall

magnitude and phase of Ω determines the position and U(1) “charge angle” of the dyon,

respectively, leaving the equivalence class CPn−2 = {Ω ∼ λΩ, λ ∈ C 6= 0} to specify

its non-abelian orientation.6 These new dyonic magnons are the most elementary type

of solution because all the other known solutions are either composites of them, or are

obtained by taking special limits, as we now explain seriatim:

(i) The original CPn magnon of [12] corresponds to a configuration of two of the new

dyons of the form (
r, p,

1

2
Ω

)
+

(
1/r,−p,−1

2
Ω

)
. (6.1)

In order to see this, an inspection of eqs. (4.22) and (4.31) illustrates precisely that

the magnon solution originally constructed in [12] (and in section 4.1) is to be thought

6In more detail we can think of Ω as a real 2n− 2 vector. The moduli space R
2n−2

≃ R
+
× S2n−3, for

which the radius factor determines the dyon’s position. The S2n−3 can be viewed as a Hopf fibration of S1

over a CPn−2 and the S1 angle is associated to the U(1) factor of the group H = U(n− 1) (the centralizer

of Λ in G = U(n)), this is the “charge angle” of the dyon which is rotating with constant angular velocity,

while the CPn−2
≃ SU(n − 1)/U(n − 2) factor describes the orientation of the dyon in the non-abelian

subgroup SU(n − 1) ⊂ H.
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of as a composite of two new dyonic magnons. In order to make this explicit, con-

sider (4.15), which leads to

F = Ψ0(ξ
∗)̟ =

ω1 − iω2

2
ef(ξ∗)




1

+i

0


+




0

0

Ω


+

ω1 + iω2

2
e−f(ξ∗)




1

−i
0


 . (6.2)

Then, since the solutions are constructed in terms of F , we can indeed interpret

this one as a superposition of two more basic constituents which are simply two

dyonic magnons like those constructed in 4.2 associated to (ξ, 1
2Ω) and (1/ξ,−1

2Ω).

Using (4.36), they are mutually at rest at space-time positions determined by7

F1(t, x1) =
1

2
log

( |ω1 − iω2|
|Ω|

)
, −F2(t, x2) =

1

2
log

( |ω1 + iω2|
|Ω|

)
. (6.3)

Then, the centre of the composite soliton is at

F (t, x) =
1

2

(
F1(t, x1) + F2(t, x2)

)
=

1

4
log
∣∣∣
ω1 − iω2

ω1 + iω2

∣∣∣ , (6.4)

in agreement with (4.26). Moreover, the distance between the two constituents is

∆x = x1 − x2 = secα sech ϑ log

( |ω2
1 + ω2

2|
Ω†Ω

)
. (6.5)

The charges of the two constituents in the direction hΩ cancel to leave (4.22).

(ii) The embedding of the Hofman-Maldacena magnon in CP 1 is recovered as the r → 1,

Ω → 0 limit of the new dyon.

(iii) The embedding of the Hofman-Maldacena magnon in RP 2 is recovered as the r → 1,

|Ω| → 1 limit of the magnon in (i).

(iv) The final type of solution is the embedding of Dorey’s dyonic magnon in RP 3. This

solution turns out to be a composite of two of the elementary dyons of the form

(
r, p,Ω(1) − iΩ(2)

)
+
(
1/r, p,Ω(1) + iΩ(2)

)
, (6.6)

where Ω(i), i = 1, 2 are two mutually orthogonal unit vectors, whose charge is

∆QL = −2
1 + r2

|r|
∣∣ sin p

2

∣∣Λ−2
(1 − r2)

|r|
∣∣ sin p

2

∣∣




0 0 0T

0 0 0T

0 0 Ω(1)Ω(2)T − Ω(2)Ω(1)T


 . (6.7)

Actually, the fact that Dorey’s magnon is a composite object could have been guessed

by considering the solitonic avatars. The new elementary dyon has a mass, eq. (5.10),

Mdyon = 2cosα, whereas the avatar of Dorey’s magnon has a mass MDorey = 4cosα [12].

7Recall that F → −F under ξ → 1/ξ.
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From the point-of-view of the dressing transformation Dorey’s dyonic magnon corre-

sponds to a solution with 4 poles at λi = (ξ, 1/ξ, 1/ξ∗, ξ∗) along with µi = (ξ∗, 1/ξ∗, 1/ξ, ξ).

The first elementary dyon corresponds to the pair λ1 = ξ and λ2 = 1/ξ and the sec-

ond to λ3 = 1/ξ∗ and λ4 = ξ∗ and the associated vectors ̟i, i = 1, . . . , 4, have the

pair-wise constraints

̟2 = θ̟1 , ̟4 = θ̟3 . (6.8)

However, because µ1 = λ4 and µ2 = λ∗3 there are the additional constraints that require

̟
†
1̟4 = 0 , ̟

†
2̟3 = 0 . (6.9)

The individual elementary dyons therefore have the dressing data8

̟1 = e1 + ie2 + Ω1 , ̟2 = −e1 + ie2 + Ω1 , (6.10)

and

̟3 = ν
(
− e1 − ie2 + Ω2

)
, ̟4 = ν(e1 − ie2 + Ω2

)
, (6.11)

where we have used the overall-scaling symmetry to fix the scaling of ̟1,2. Then the

additional constraints (6.9) require

Ω†
1 ·Ω2 = 0 . (6.12)

Dorey’s dyon is then obtained as the special case when ν = 1 and with the choice

Ω1 = Ω(1) − iΩ(2) , Ω2 = Ω(1) + iΩ(2) , (6.13)

for two orthogonal real vectors Ω(1,2) with |Ω(1)| = |Ω(2)|. Notice this solves the constraint

above. One can view setting ν = 1 as fixing the relative position of the two elementary

dyons in x and t. In addition, by choosing a suitable overall origin in x and t the two

vectors Ω(1,2) can be chosen to have unit length leading to the assignments in (6.6).

It is important to emphasize that in the context of CPn, Dorey’s dyon is a composite

solution since ν can be thought of as determining the relative position of the two constituent

dyons in x and t. However, the composite solution is also a solution of the sigma model

with target space Sn. The dressing transformation in this case is identical up to the fact

that one has to impose an additional reality condition on the solutions. This additional

constraint leads to the conditions on the dressing data:

̟4 = ̟
∗
1 , ̟3 = ̟

∗
2 , (6.14)

which enforces the choice ν = 1 and (6.13). In other words, the additional reality constraint

locks the two elementary dyons together to form Dorey’s — now elementary — dyon. This

is as it should be since the new elementary dyon is not by itself a solution in the Sn theory.

8As previously, Ω1 and Ω2 are orthogonal to e1 and e2.
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A The generalized CP
2 Dyon of [9]

In this appendix we shall recover the CP 2 solution constructed by Abbott, Aniceto and

Sax (AAS) in [9] from (4.32).

Consider (4.32) for p = π:

Z =

[
−1

2

(
2 |ω1|2e

4rx

r2+1 + Ω†Ω
)
− Ω†Ω

r2 − 1

] (
cos t e1 − sin t e2

)

+ |ω1|2e
4rx

r2+1 e−it
(
e1 − ie2

)
− e

2rx

r2+1 e
−i r

2
−1

r2+1
t
ω∗

1Ω .

(A.1)

In order to simplify the comparison with the solution proposed in [9], we perform a U(n+1)

rotation

Z −→ UZ , U =




1√
2
− i√

2
0

1√
2

+ i√
2

0

0 0 1


 (A.2)

so that

Z̃ = UZ = − eit
2(r2 − 1)|ω1|2e

4rx

r2+1 + (r2 + 1)Ω†Ω

2
√

2 (r2 − 1)
e1

+ e−it 2(r2 − 1)|ω1|2e
4rx

r2+1 − (r2 + 1)Ω†Ω

2
√

2 (r2 − 1)
e2

− e
−i r

2
−1

r2+1
t
e

2rx

r2+1ω∗
1Ω .

(A.3)

Then, we restrict ourselves to the case of CP 2 and introduce the following parameterization

(see [9], eq. 11)

Z̃ = N(t, x)
(
sin ξ̂ cos(ϑ2/2)e

iϕ2/2
e1 + sin ξ̂ sin(ϑ2/2)e

−iϕ2/2
e2 + cos ξ̂eiϕ1/2

e3

)
, (A.4)

together with Ω = |Ω|e3. Looking at the phases, this easily leads to

ϕ2 = 2t and ϕ1 = −2ωt , with ω =
r2 − 1

r2 + 1
, (A.5)

which is part of the ansatz used by AAS. In addition, they write

cos ϑ2 = sech
(√

1 − ω2 2x
)

= sech

(
4rx

r2 + 1

)
, ξ̂ =

π

2
− e(x) . (A.6)
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Then, our solution matches theirs provided that

tan
(ϑ2

2

)
= −2(r2 − 1)|ω1|2e

4rx

r2+1 − (r2 + 1)Ω†Ω

2(r2 − 1)|ω1|2e
4rx

r2+1 + (r2 + 1)Ω†Ω
= −e

4rx

r2+1 − 1

e
4rx

r2+1 + 1
. (A.7)

This requires to fix
Ω†Ω

|ω1|2
= 2

r2 − 1

r2 + 1
≡ 2ω (A.8)

which, taking (4.36) into account, amounts to fix the position of the magnon in space-time.

Notice that this choice is only possible provided that r2 > 1. Then,

Z̃ = −eit e
4rx

r2+1 + 1√
2

|ω1|2 e1 + e−it e
4rx

r2+1 − 1√
2

|ω1|2 e2 − e
−i r

2
−1

r2+1
t
e

2rx

r2+1 ω∗
1Ω

=⇒ |N |2 = |ω1|4
(
e

8rx

r2+1 + 2
r2 − 1

r2 + 1
e

4rx

r2+1 + 1
)

≡ 2|ω1|4e
√

1−ω2 2x cosh
(√

1 − ω2 2x
) [

1 + ω sech
(√

1 − ω2 2x
)]

,

(A.9)

which finally leads to

sin2 ξ̂ = cos2 e(x) =
1

|N |2 cos2(ϑ2/2)

(
e

4rx

r2+1 + 1√
2

|ω1|2
)2

=
1

1 + ω sech
(√

1 − ω2 2x
) ,

(A.10)

which coincides precisely with eq. 13 of [9].
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